Penerapan Exponential Smoothing untuk Transformasi Data dalam Meningkatkan Akurasi Neural Network pada Prediksi Harga Emas

Indah Suryani, Romi Satria Wahono

Abstract


Emas menjadi salah satu logam mulia yang paling banyak diminati baik untuk investasi maupun untuk dijadikan perhiasan. Memprediksi harga emas telah menjadi signifikan dan sangat penting bagi investor karena emas merupakan alat yang penting untuk perlindungan nilai resiko serta sebagai jalan investasi. Metode Neural Network merupakan salah satu model yang paling banyak digunakan dalam berbagai bidang penelitian. Neural Network memiliki banyak  fitur yang diinginkan yang sangat cocok untuk aplikasi peramalan. Namun sebagai sistem black box, pemodelan Neural Network sepenuhnya tergantung pada input dan output data sehingga kualitas dan distribusi set sampel pembelajaran penting bagi kemampuan generalisasi jaringan. Maka pada penelitian ini, metode Exponential Smoothing digunakan untuk melakukan transformasi data guna meningkatkan kualitas data sehingga dapat meningkatkan akurasi prediksi pada Neural Network. Eksperimen yang dilakukan pada penelitian ini adalah untuk memperoleh arsitektur optimal sehingga menghasilkan prediksi harga emas yang akurat. Penelitian ini menggunakan Neural Network dan Exponential Smoothing dengan 10 kombinasi parameter pada eksperimen yang dilakukan.  Kesimpulan yang didapatkan dari eksperimen yang dilakukan adalah bahwa prediksi harga emas menggunakan Neural Network dan Exponential Smoothing lebih akurat dibanding metode individual Neural Network.

Key Words: emas, prediksi, neural network, exponential smoothing, 


Full Text:

PDF

References


Anbazhagan, S., & Kumarappan, N. (2014). Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT. Energy Conversion and Management, 78, 711–719.

Apergis, N. (2014). Can gold prices forecast the Australian dollar movements? International Review of Economics & Finance, 29, 75–82.

Babu, C. N., & Reddy, B. E. (2014). A moving-average filter based hybrid ARIMA – ANN model for forecasting time series data. Applied Soft Computing Journal, 23, 27–38.

Beaumont, A. N. (2014). Data transforms with exponential smoothing methods of forecasting. International Journal of Forecasting, 30(4), 918–927.

Bennett, C. J., Stewart, R. a., & Lu, J. W. (2014). Forecasting low voltage distribution network demand profiles using a pattern recognition based expert system. Energy, 67, 200–212.

Berndtsson, M., Hansson, J., Olsson, B., & Lundell, B. (2008). Thesis Projects.

Chatfield, C. (2000). Time Series Forecasting.

Chisholm, A. (2013). Exploring Data with RapidMiner.

Dong, Z., Yang, D., Reindl, T., & Walsh, W. M. (2013). Short-term solar irradiance forecasting using exponential smoothing state space model. Energy, 55, 1104–1113.

Eisler, R. (2004). Biogeochemical, Health, and Ecotoxicological Perspectives on Gold and Gold Mining.

Gorunescu. (2011). Data Mining Concept Model Technique.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques.

He & Xu, shaohua. (2009). Process Neural Network.

Hofmann, M. (2009). Data Mining and Knowledge Discovery Series.

Hyndman, Koehlr, Ord, S. (2008). Springer Series in Statistics Forecasting with Exponential Smoothing.

Jammazi, R., & Aloui, C. (2012). Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling. Energy Economics, 34(3), 828–841.

Kirchgässner, G., & Wolters, J. (2007). Introduction to Modern Time Series Analysis.

Ko, C.-N., & Lee, C.-M. (2013). Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter. Energy, 49, 413–422.

Larose, D. T. (2006). Data Mining Methods and Models. Data Mining Methods and Models.

Lavrac, N., & Zupan, B. (2006). Data mining in medicine. In Data Mining and Knowledge Discovery Handbook (pp. 21–36).

Liao, G. (2014). Electrical Power and Energy Systems Hybrid Improved Differential Evolution and Wavelet Neural Network with load forecasting problem of air conditioning. IInternational Journal of Electrical Power and Energy Systems, 61, 673–682.

Lu, C.-J., Lee, T.-S., & Lian, C.-M. (2012). Sales forecasting for computer wholesalers: A comparison of multivariate adaptive regression splines and artificial neural networks. Decision Support Systems, 54(1), 584–596.

Montgomery, D. C. (2008). Introduction to Time Series Analysis and Forecasting.

Ouyang, Y., & Yin, H. (2014). A neural gas mixture autoregressive network for modelling and forecasting FX time series. Neurocomputing, 135, 171–179.

Pierdzioch, C., Risse, M., & Rohloff, S. (2014). On the efficiency of the gold market: Results of a real-time forecasting approach. International Review of Financial Analysis, 32, 95–108.

Pulido, M., Melin, P., & Castillo, O. (2014). Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Information Sciences, 280, 188–204.

Sbrana, G., & Silvestrini, A. (2014). Int . J . Production Economics Random switching exponential smoothing and inventory forecasting. Intern. Journal of Production Economics, 156, 283–294.

Shumway, R. H., Shumway, R. H., Stoffer, D. S., & Stoffer, D. S. (2006). Time Series Analysis and Its Applications. Design.

Tratar, L. F. (2015). Int . J . Production Economics. Intern. Journal of Production Economics, 161, 64–73.

Vercellis, C. (2009). Business Intelligence: Data Mining and Optimization for Decision Making.

Yager, R. R. (2013). Exponential smoothing with credibility weighted observations. Information Sciences, 252, 96–105.

Yu, F., & Xu, X. (2014). A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Applied Energy, 134, 102–113.

Zhang, G. P. (2004). Neural Networks in Business Forecasting. (G. P. Zhang, Ed.)Review of Economic Sciences (Vol. 6). IGI Global.

Zhou, S., Lai, K. K., & Yen, J. (2012). A dynamic meta-learning rate-based model for gold market forecasting. Expert Systems with Applications, 39(6), 6168–6173.


Refbacks

  • There are currently no refbacks.




Journal of Intelligent Systems (JIS, ISSN 2356-3982)
Copyright © 2015 IlmuKomputer.Com. All rights reserved.