Integrasi Metode Information Gain untuk Seleksi Fitur dan AdaBoost untuk Mengurangi Bias pada Analisis Sentimen Review Restoran Menggunakan Algoritma Naive Bayes
Abstract
Full Text:
PDFReferences
Ali, W., Shamsuddin, S. M., & Ismail, A. S. (2012). Intelligent Naïve Bayes-based approaches for Web proxy caching. Knowledge-Based Systems, 31, 162–175.
Bauer, E. (1999). An Empirical Comparison of Voting Classification Algorithms : Bagging , Boosting , and Variants. Machine Learning Research, 139, 105–139.
Chen, J., Huang, H., Tian, S., & Qu, Y. (2009). Feature selection for text classification with Naïve Bayes. Expert Systems with Applications, 36, 5432–5435.
Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques. Berlin.
He, Y., & Zhou, D. (2011). Self-training from labeled features for sentiment analysis. Information Processing & Management, 47, 606–616.
Huang, J., Rogers, S., & Joo, E. (2013). Improving Restaurants. Information System, 1–5.
Kang, H., Yoo, S. J., & Han, D. (2012a). Expert Systems with Applications Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews. Expert Systems With Applications, 39(5), 6000–6010.
Kang, H., Yoo, S. J., & Han, D. (2012b). Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews. Expert Systems with Applications, 39, 6000–6010.
Korada, N. K., Kumar, N. S. P., & Deekshitulu, Y. V. N. H. (2012). Implementation of NBian Classifier and Ada-Boost Algorithm Using Maize Expert System. International Journal of Information Sciences and Techniques, 2, 63–75.
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Toronto: Morgan and Claypool
Muthia, D. A. (2013). Analisis Sentimen Pada Review Buku Menggunakan Algoritma. Sistem InformasiSistem Informasi, 1–9.
Reyes, A., & Rosso, P. (2012). Making objective decisions from subjective data : Detecting irony in customer reviews. Decision Support Systems, 53, 754–760.
Sharma, A., & Dey, S. (2012). A Comparative Study of Feature Selection and Machine Learing Techniques for Sentiment Analysis. Information Search and Retrieval, 1–7
Wang, R. (2012). Adaboost for Feature Selection, Classification and Its Relation with SVM, A Review. Physics Procedia, 25, 800–807.
Wayan, N. (2013). Naïve Bayes Classifier Dan Support Vector Machines Untuk Sentiment Analysis. Sistem Informasi, 2–4.
Wu, X. (2009). The Top Ten Algorithms in Data Mining. Boca Raton: Taylor and Francis
Zhang, & Gao, F. (2011). An Improvement to NB for Text Classification. Procedia Engineering, 15, 2160–2164.
Zhang, Ye, Q., Zhang, Z., & Li, Y. (2011). Sentiment classification of Internet restaurant reviews written in Cantonese. Expert Systems with Applications, 38, 7674–7682.
Zhang, Z., Ye, Q., Law, R., & Li, Y. (2010). The impact of e-word-of-mouth on the online popularity of restaurants: A comparison of consumer reviews and editor reviews. International Journal of Hospitality Management, 29, 694–700.
Refbacks
- There are currently no refbacks.
Journal of Intelligent Systems(JIS, ISSN 2356-3982) Copyright © 2020IlmuKomputer.Com. All rights reserved. |