Optimasi Parameter Pada Metode Support Vector Machine Berbasis Algoritma Genetika untuk Estimasi Kebakaran Hutan
Abstract
Full Text:
PDFReferences
Brun, C., Margalef, T., & Cortés, A. (2013). Coupling Diagnostic and Prognostic Models to a Dynamic Data Driven Forest Fire Spread Prediction System. Procedia Computer Science, 18, 1851–1860. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1877050913004973
Chen, K.-Y. (2007). Forecasting systems reliability based on support vector regression with genetic algorithms. Reliability Engineering & System Safety, 92(4), 423–432.
Conway, D., & White, J. M. (2012). Machine Learning for Hackers. (J. Steele, Ed.).
Cortez, P., & Morais, A. (2007). A Data Mining Approach to Predict Forest Fires using Meteorological Data.
Denham, M., Wendt, K., Bianchini, G., Cortés, A., & Margalef, T. (2012). Dynamic Data-Driven Genetic Algorithm for forest fire spread prediction. Journal of Computational Science, 3(5), 398–404. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1877750312000658
Dua. (2011). Data Mining and Machine Learning in Cybersecurity. (Dua, Ed.).
Eastaugh, C. S., & Hasenauer, H. (2014). Deriving forest fire ignition risk with biogeochemical process modelling. Environmental Modelling & Software, 55, 132–142. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1364815214000280
Gorunescu, F. (2011). Intelligent Systems Reference Library. (Gorunescu, Ed.).
Gu, J., Zhu, M., & Jiang, L. (2011). Housing price forecasting based on genetic algorithm and support vector machine. Expert Systems with Applications, 38(4), 3383–3386. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0957417410009310
Guo, X., Li, D., & Zhang, A. (2012). Improved Support Vector Machine Oil Price Forecast Model Based on Genetic Algorithm Optimization Parameters. AASRI Procedia, 1, 525–530. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S2212671612000832
Hosseini, M., Javaherian, A., & Movahed, B. (2014). Determination of permeability index using Stoneley slowness analysis, NMR models, and formation evaluations: a case study from a gas reservoir, south of Iran. Journal of Applied Geophysics, 109, 80–87.
Ilhan, I., & Tezel, G. (2013). A genetic algorithm-support vector machine method with parameter optimization for selecting the tag SNPs. Journal of Biomedical Informatics, 46(2), 328–40. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23262450
Jia, Z., Ma, J., Wang, F., & Liu, W. (2011). Hybrid of simulated annealing and SVM for hydraulic valve characteristics prediction. Expert Systems with Applications, 38(7), 8030–8036.
Jia, Z.-Y., Ma, J.-W., Wang, F.-J., & Liu, W. (2010). Characteristics forecasting of hydraulic valve based on grey correlation and ANFIS. Expert Systems with Applications, 37(2), 1250–1255. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0957417409005624
Kaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F. (2015).
Electrical Power and Energy Systems Forecasting electricity consumption : A comparison of regression analysis , neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 67, 431–438.
Lee, S., Kang, P., & Cho, S. (2014). Neurocomputing Probabilistic local reconstruction for k -NN regression and its application to virtual metrology in semiconductor manufacturing. Neurocomputing, 131, 427–439.
Lira, M. A. T., Da Silva, E. M., Alves, J. M. B., & Veras, G. V. O. (2014). Estimation of wind resources in the coast of Ceará, Brazil, using the linear regression theory. Renewable and Sustainable Energy Reviews, 39, 509–529.
Machairas, V., Tsangrassoulis, A., & Axarli, K. (2014). Algorithms for optimization of building design: A review. Renewable and Sustainable Energy Reviews, 31(1364), 101–112. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1364032113007855
Maimon, O., & Rokach, L. (2010). Data Mining and Knowledge Discovery Handbook.
Özbayoğlu, a. M., & Bozer, R. (2012). Estimation of the Burned Area in Forest Fires Using Computational Intelligence Techniques. Procedia Computer Science, 12, 282–287.
Pan, S., Iplikci, S., Warwick, K., & Aziz, T. Z. (2012). Parkinson’s Disease tremor classification – A comparison between Support Vector Machines and neural networks. Expert Systems with Applications, 39(12), 10764–10771.
Quintano, C., Fernández-Manso, A., Stein, A., & Bijker, W. (2011). Estimation of area burned by forest fires in Mediterranean countries: A remote sensing data mining perspective. Forest Ecology and Management, 262(8), 1597–1607. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0378112711004385
Raghavendra. N, S., & Deka, P. C. (2014). Support vector machine applications in the field of hydrology: A review. Applied Soft Computing, 19, 372–386. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1568494614000611
Rynkiewicz, J. (2012). General bound of overfitting for MLP regression models. Neurocomputing, 90, 106–110.
Singh, P., & Borah, B. (2014). International Journal of Approximate Reasoning Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization. International Journal of Approximate Reasoning, 55(3), 812–833.
Suganyadevi, M. V, & Babulal, C. K. (2014). Support Vector Regression Model for the prediction of Loadability Margin of a Power System. Applied Soft Computing Journal, 24, 304–315.
Tiryaki, S., Öz, Ş., & Y, İ. (2014). International Journal of Adhesion & Adhesives Comparison of arti fi cial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods, 55, 29–36.
Wang, X., Wen, J., Zhang, Y., & Wang, Y. (2014). Optik Real estate price forecasting based on SVM optimized by PSO. Optik - International Journal for Light and Electron Optics, 125(3), 1439–1443.
Yang, X. (2014). Nature-Inspired Optimization Algorithms. Elsevier. doi:10.1016/B978-0-12-416743-8.00005-1
Yilmaz, I., & Kaynar, O. (2011). Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications, 38(5), 5958–5966.
Zameer, A., Mirza, S. M., & Mirza, N. M. (2014). Core loading pattern optimization of a typical two-loop 300MWe PWR using Simulated Annealing (SA), novel crossover Genetic Algorithms (GA) and hybrid GA(SA) schemes. Annals of Nuclear Energy, 65, 122–131.
Zhang, D., Liu, W., Wang, A., & Deng, Q. (2011). Parameter Optimization for Support Vector Regression Based on Genetic Algorithm with Simplex Crossover Operator. Journal of Information & Computational Science, 6(June), 911–920. Retrieved from http://www.joics.com/publishedpapers/2011_8_6_911_920.pdf
Zhao, M., Fu, C., Ji, L., Tang, K., & Zhou, M. (2011). Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Systems with Applications, 38(5), 5197–5204.
Zhao, W., Tao, T., & Zio, E. (2015). System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection. Applied Soft Computing, 30, 792–802.
Refbacks
- There are currently no refbacks.
Journal of Intelligent Systems(JIS, ISSN 2356-3982) Copyright © 2020IlmuKomputer.Com. All rights reserved. |