Penerapan Naive Bayes untuk Mengurangi Data Noise pada Klasifikasi Multi Kelas dengan Decision Tree
Abstract
Full Text:
PDFReferences
Aggarwal, C. C. (2015). Data Mining, The Textbook. Springer Berlin Heidelberg.
Aitkenhead, M. J. (2008). A co-evolving decision tree classification method. Expert Systems with Applications, 34(1), 18–25.
Aviad, B., & Roy, G. (2011). Classification by clustering decision tree-like classifier based on adjusted clusters. Expert Systems with Applications, 38(7), 8220–8228.
Balamurugan, S. A. A., & Rajaram, R. (2009). Effective solution for unhandled exception in decision tree induction algorithms. Expert Systems with Applications, 36(10), 12113–12119.
Berndtsson, M., Hansson, J., Olsson, B., & Lundell, B. (2008). Thesis Guide - A Guide for Students in Computer Science and Information Systems (2nd ed). Springer-Verlag.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. Chapman and Hall/CRC (1st ed., Vol. 19). Chapman and Hall/CRC.
Bujlow, T., Riaz, T., & Pedersen, J. M. (2012). A method for classification of network traffic based on C5.0 machine learning algorithm. 2012 International Conference on Computing, Networking and Communications, ICNC’12, 237–241.
Chandra, B., & Paul Varghese, P. (2009). Fuzzifying Gini Index based decision trees. Expert Systems with Applications, 36(4), 8549–8559.
Chen, Y. L., & Hung, L. T. H. (2009). Using decision trees to summarize associative classification rules. Expert Systems with Applications, 36, 2338–2351.
Dawson, C. W. (2009). Projects in Computing and Information Systems A Student’s Guide (2nd ed). Great Britain: Pearson Education.
Demsar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. The Journal of Machine Learning Research, 7, 1–30.
Farid, D. M., & Rahman, M. Z. (2010). Anomaly network intrusion detection based on improved self adaptive Bayesian algorithm. Journal of Computers, 5(1), 23–31.
Farid, D. M., Rahman, M. Z., & Rahman, C. M. (2011). Adaptive Intrusion Detection based on Boosting and Naive Bayesian Classifier. International Journal of Computer Applications, 24(3), 12–19.
Farid, D. M., Zhang, L., Hossain, A., Rahman, C. M., Strachan, R., Sexton, G., & Dahal, K. (2013). An adaptive ensemble classifier for mining concept drifting data streams. Expert Systems with Applications, 40(15), 5895–5906.
Franco-Arcega, A., Carrasco-Ochoa, J. a., Sanchez-Diaz, G., & Martinez-Trinidad, J. F. (2011). Decision tree induction using a fast splitting attribute selection for large datasets. Expert Systems with Applications, 38(11), 14290–14300.
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques.
Jamain, A., & Hand, D. J. (2008). Mining Supervised Classification Performance Studies: A Meta-Analytic Investigation. Journal of Classification, 25(1), 87–112.
Larose Daniel T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. Wiley Interscience.
Lee, L. H., & Isa, D. (2010). Automatically computed document dependent weighting factor facility for Naïve Bayes classification. Expert Systems with Applications, 37(12), 8471–8478.
Liao, S. H., Chu, P. H., & Hsiao, P. Y. (2012). Data mining techniques and applications - A decade review from 2000 to 2011. Expert Systems with Applications, 39(12), 11303–11311.
Loh, W.-Y., & Shih, Y.-S. (1997). Split Selection Methods for Classification Trees. Statistica Sinica, 7(4), 815–840.
Maimon, O., & Rokach, L. (2010). Data Mining and Knowledge Discovery Handbook. Data Mining and Knowledge Discovery Handbook (2nd ed.). New York: Springer-Verlag.
Ngai, E. W. T., Xiu, L., & Chau, D. C. K. (2009). Application of data mining techniques in customer relationship management: A literature review and classification. Expert Systems with Applications, 36, 2592–2602.
Polat, K., & Gunes, S. (2009). A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems. Expert Systems with Applications, 36, 1587–1592.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. California: Morgan Kaufmann.
Safavian, S. R., & Landgrebe, D. (1991). A Survey of Decision Tree Classifier Methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3).
Turney, P. (1995). Cost-Sensitive Classification : Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm. Journal of Artificial Intelligence Research, 2, 369–409.
Utgoff, P. E. (1989). Incremental Induction of Decision Trees. Machine Learning, 4(2), 161–186.
Witten, I. H., Eibe, F., & Hall, M. A. (2011). Data mining : practical machine learning tools and techniques.—3rd ed. Morgan Kaufmann (3rd ed.). Morgan Kaufmann.
Refbacks
- There are currently no refbacks.
Journal of Intelligent Systems(JIS, ISSN 2356-3982) Copyright © 2020IlmuKomputer.Com. All rights reserved. |