Penerapan Teknik Ensemble untuk Menangani Ketidakseimbangan Kelas pada Prediksi Cacat Software

Aries Saifudin, Romi Satria Wahono

Abstract


Software berkualitas tinggi adalah software yang tidak ditemukan cacat selama pemeriksaan dan pengujian. Memperbaiki software yang cacat setelah pengiriman membutuhkan biaya jauh lebih mahal dari pada selama pengembangan. Pengujian merupakan proses paling mahal dan menghabiskan waktu sampai 50% dari jadwal pengembangan software. Tetapi belum ada model prediksi cacat software yang berlaku umum. NaÏŠve Bayes merupakan model paling efektif dan efisien, tetapi belum dapat mengklasifikasikan dataset berbasis metrik dengan kinerja terbaik secara umum dan selalu konsisten dalam semua penelitian. Dataset software metrics secara umum bersifat tidak seimbang, hal ini dapat menurunkan kinerja model prediksi cacat software karena cenderung menghasilkan prediksi kelas mayoritas. Secara umum ketidakseimbangan kelas dapat ditangani dengan dua pendekatan, yaitu level data dan level algoritma. Pendekatan level data ditujukan untuk memperbaiki keseimbangan kelas. Sedangkan pendekatan level algoritma dilakukan dengan memperbaiki algoritma atau menggabungkan (ensemble) pengklasifikasi tunggal agar menjadi lebih baik. Algoritma ensemble yang populer adalah boosting dan bagging. AdaBoost merupakan salah satu algoritma boosting yang telah menunjukkan dapat memperbaiki kinerja pengklasifikasi. Maka pada penelitian ini diusulkan penerapan teknik ensemble menggunakan algoritma AdaBoost dan Bagging. Pengklasifikasi yang digunakan adalah NaÏŠve Bayes. Hasil penelitian menunjukkan bahwa teknik ensemble dengan algoritma Bagging dapat meningkatkan sensitivitas dan G-Mean secara signifikan, sedangkan AdaBoost tidak dapat meningkatkan secara signifikan. Sehingga disimpulkan bahwa Bagging lebih baik daripada AdaBoost ketika digunakan untuk meningkatkan kinerja NaÏŠve Bayes pada prediksi cacat software.

Full Text:

PDF

References


Afza, A. J., Farid, D. M., & Rahman, C. M. (2011). A Hybrid Classifier using Boosting, Clustering, and Naïve Bayesian Classifier. World of Computer Science and Information Technology Journal (WCSIT), 105-109.

Alfaro, E., Gamez, M., & Garcia, N. (2013). adabag: An R Package for Classification with Boosting and Bagging. Journal of Statistical Software, 1-35.

Attenberg, J., & Ertekin, S. (2013). Class Imbalance and Active Learning. In H. He, & Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications (pp. 101-149). New Jersey: John Wiley & Sons.

Bramer, M. (2007). Principles of Data Mining. London: Springer.

Carver, R. H., & Nash, J. G. (2012). Doing Data Analysis with SPSS® Version 18. Boston: Cengage Learning.

Catal, C. (2012). Performance Evaluation Metrics for Software Fault Prediction Studies. Acta Polytechnica Hungarica, 9(4), 193-206.

Chis, M. (2008). Evolutionary Decision Trees and Software Metrics for Module Defects Identification. World Academy of Science, Engineering and Technology, 273-277.

Corder, G. W., & Foreman, D. I. (2009). Nonparametric Statistics for Non-statisticians: A Step-by-step Approach. New Jersey: John Wiley & Sons.

Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research, 1–30.

Dubey, R., Zhou, J., Wang, Y., Thompson, P. M., & Ye, J. (2014). Analysis of Sampling Techniques for Imbalanced Data: An n = 648 ADNI Study. NeuroImage, 220–241.

Fakhrahmad, S. M., & Sami, A. (2009). Effective Estimation of Modules' Metrics in Software Defect Prediction. Proceedings of the World Congress on Engineering (pp. 206-211). London: Newswood Limited.

Galar, M., Fernández, A., Barrenechea, E., & Herrera, F. (2013). EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-sets by Evolutionary Under Sampling. Pattern Recognition, 3460–3471.

García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced Nonparametric Tests for Multiple Comparisons in the Design of Experiments in Computational Intelligence and Data Mining: Experimental Analysis of Power. Information Sciences, 2044–2064.

Gayatri, N., Nickolas, S., Reddy, A., & Chitra, R. (2009). Performance Analysis Of Data Mining Algorithms for Software Quality Prediction. International Conference on Advances in Recent Technologies in Communication and Computing (pp. 393-395). Kottayam: IEEE Computer Society.

Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques. Berlin: Springer-Verlag.

Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2011). The Misuse of the NASA Metrics Data Program Data Sets for Automated Software Defect Prediction. Evaluation & Assessment in Software Engineering (EASE 2011), 15th Annual Conference on, (pp. 96-103). Durham.

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2011). A Systematic Literature Review on Fault Prediction Performance in Software Engineering. IEEE Transactions on Software Engineering, Accepted for publication - available online, 1-31.

Harrington, P. (2012). Machine Learning in Action. New York: Manning Publications Co.

Huck, S. W. (2012). Reading Statistics and Research. Boston: Pearson Education.

Japkowicz, N. (2013). Assessment Metrics for Imbalanced Learning. In H. He, & Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications (pp. 187-206). New Jersey: John Wiley & Sons.

Khoshgoftaar, T. M., Gao, K., & Seliya, N. (2010). Attribute Selection and Imbalanced Data: Problems in Software Defect Prediction. International Conference on Tools with Artificial Intelligence (pp. 137-144). IEEE Computer Society.

Korada, N. K., Kumar, N. P., & Deekshitulu, Y. (2012). Implementation of Naïve Bayesian Classifier and Ada-Boost Algorithm Using Maize Expert System. International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.3, 63-75.

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Transactions on Software Engineering, 485-496.

Liang, G., & Zhang, C. (2011). Empirical Study of Bagging Predictors on Medical Data. Proceedings of the 9-th Australasian Data Mining Conference (AusDM'11) (pp. 31-40). Ballarat, Australia: Australian Computer Society, Inc.

Liang, G., Zhu, X., & Zhang, C. (2011). An Empirical Study of Bagging Predictors for Different Learning Algorithms. Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (pp. 1802-1803). California: AAAI Press.

Liu, X.-Y., & Zhou, Z.-H. (2013). Ensemble Methods for Class Imbalance Learning. In H. He, & Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications (pp. 61-82). New Jersey: John Wiley & Sons.

López, V., Fernández, A., & Herrera, F. (2014). On the Importance of the Validation Technique for Classification with Imbalanced Datasets: Addressing Covariate Shift when Data is Skewed. Information Sciences, 1–13. doi:10.1016/j.ins.2013.09.038

McDonald, M., Musson, R., & Smith, R. (2008). The Practical Guide to Defect Prevention. Washington: Microsoft Press.

Menzies, T., Greenwald, J., & Frank, A. (2007). Data Mining Static Code Attributes to Learn Defect Predictors. IEEE Transactions on Software Engineering, 1-12.

Myrtveit, I., Stensrud, E., & Shepperd, M. (2005). Reliability and Validity in Comparative Studies of Software Prediction Models. IEEE Transactions on Software Engineering, 380-391.

Peng, Y., & Yao, J. (2010). AdaOUBoost: Adaptive Over-sampling and Under-sampling to Boost the Concept Learning in Large Scale Imbalanced Data Sets. Proceedings of the international conference on Multimedia information retrieval (pp. 111-118). Philadelphia, Pennsylvania, USA: ACM.

Riquelme, J. C., Ruiz, R., Rodriguez, D., & Moreno, J. (2008). Finding Defective Modules From Highly Unbalanced Datasets. Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos (pp. 67-74). Gijon, España: SISTEDES.

Rodriguez, D., Herraiz, I., Harrison, R., Dolado, J., & Riquelme, J. C. (2014). Preliminary Comparison of Techniques for Dealing with Imbalance in Software Defect Prediction. 18th International Conference on Evaluation and Assessment in Software Engineering (EASE 2014) (pp. 371-380). New York: ACM. doi:10.1145/2601248.2601294

Seiffert, C., Khoshgoftaar, T. M., Hulse, J. V., & Folleco, A. (2011). An Empirical Study of the Classification Performance of Learners on Imbalanced and Noisy Software Quality Data. Information Sciences, 1-25.

Seiffert, C., Khoshgoftaar, T. M., Hulse, J. V., & Napolitano, A. (2008). Resampling or Reweighting: A Comparison of Boosting Implementations. 20th IEEE International Conference on Tools with Artificial Intelligence, 445-451.

Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data Quality: Some Comments on the NASA Software Defect Data Sets. IEEE Transactions on Software Engineering, 1208-1215. doi:10.1109/TSE.2013.11

Shull, F., Basili, V., Boehm, B., Brown, A. W., Costa, P., Lindvall, M., . . . Zelkowitz, M. (2002). What We Have Learned About Fighting Defects. METRICS '02 Proceedings of the 8th International Symposium on Software Metrics (pp. 249-258). Washington: IEEE Computer Society.

Singh, P., & Verma, S. (2014). An Efficient Software Fault Prediction Model using Cluster Based Classification. International Journal of Applied Information Systems (IJAIS), 7(3), 35-41.

Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, J. (2011). A General Software Defect-Proneness Prediction Framework. IEEE Transactions on Software Engineering, 356-370.

Strangio, M. A. (2009). Recent Advances in Technologies. Vukovar: In-Teh.

Sun, Y., Mohamed, K. S., Wong, A. K., & Wang, Y. (2007). Cost-sensitive Boosting for Classification of Imbalanced Data. Pattern Recognition Society, 3358-3378.

Tao, W., & Wei-hua, L. (2010). Naïve Bayes Software Defect Prediction Model. Computational Intelligence and Software Engineering (CiSE) (pp. 1-4). Wuhan: IEEE Computer Society. doi:10.1109/CISE.2010.5677057

Ting, K. M., & Zheng , Z. (2003). A Study of AdaBoost with Naive Bayesian Classifiers: Weakness and Improvement. Computational Intelligence, 19(2), 186-200. doi:10.1111/1467-8640.00219

Turhan, B., & Bener, A. (2007). Software Defect Prediction: Heuristics for Weighted Naive Bayes. Proceedings of the 2nd International Conference on Software and Data Technologies (ICSOFT'07), (pp. 244-249).

Wahono, R. S., Suryana, N., & Ahmad, S. (2014, May). Metaheuristic Optimization based Feature Selection for Software Defect Prediction. Journal of Software, 9(5), 1324-1333. doi:10.4304/jsw.9.5.1324-1333

Wang, S., & Yao, X. (2013). Using Class Imbalance Learning for Software Defect Prediction. IEEE Transactions on Reliability, 434-443.

Weiss, G. M. (2013). Foundations of Imbalanced Learning. In H. He, & Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications (pp. 13-41). New Jersey: John Wiley & Sons.

Yap, B. W., Rani, K. A., Rahman, H. A., Fong, S., Khairudin, Z., & Abdullah, N. N. (2014). An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets. Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). 285, pp. 13-22. Singapore: Springer. doi:10.1007/978-981-4585-18-7_2

Zhang, D., Liu, W., Gong, X., & Jin, H. (2011). A Novel Improved SMOTE Resampling Algorithm Based on Fractal. Computational Information Systems, 2204-2211.

Zhang, H., & Wang, Z. (2011). A Normal Distribution-Based Over-Sampling Approach to Imbalanced Data Classification. Advanced Data Mining and Applications - 7th International Conference (pp. 83-96). Beijing: Springer.

Zhang, H., Jiang, L., & Su, J. (2005). Augmenting Na?ve Bayes for Ranking. ICML '05 Proceedings of the 22nd international conference on Machine learning (pp. 1020 - 1027). New York: ACM Press. doi:http://dx.doi.org/10.1145/1102351.1102480

Zhou, Z.-H., & Yu, Y. (2009). The Top Ten Algorithms in Data Mining. (X. Wu, & V. Kumar, Eds.) Florida: Chapman & Hall/CRC.






Journal of Software Engineering(JSE, ISSN 2356-3974)
Copyright © 2020IlmuKomputer.Com. All rights reserved.