Integrasi Pareto Fitness, Multiple-Population dan Temporary Population pada Algoritma Genetika untuk Pembangkitan Data Tes pada Pengujian Perangkat Lunak
Abstract
Full Text:
PDFReferences
Alakeel, A. (2014). Using Fuzzy Logic Techniques for Assertion-Based Software Testing Metrics. The Scientific World Journal. Retrieved from http://www.hindawi.com/journals/tswj/aa/629430/
Aleti, A., & Grunske, L. (2015). Test data generation with a Kalman filter-based adaptive genetic algorithm. Journal of Systems and Software, 103, 343–352. http://doi.org/10.1016/j.jss.2014.11.035
Ali, S., Briand, L. C., Hemmati, H., & Panesar-Walawege, R. K. (2010). A systematic review of the application and empirical investigation of search-based test case generation. IEEE Transactions on Software Engineering, 36(6), 742–762. http://doi.org/10.1109/TSE.2009.52
Alshraideh, M., Mahafzah, B. a., & Al-Sharaeh, S. (2011). A multiple-population genetic algorithm for branch coverage test data generation. Software Quality Journal, 19, 489–513. http://doi.org/10.1007/s11219-010-9117-4
Anand, S., Burke, E. K., Yueh, T., Clark, J., Cohen, M. B., Grieskamp, W., … Zhu, H. (2015). The Journal of Systems and Software An orchestrated survey of methodologies for automated software test case generation Orchestrators and Editors , 86(2013), 1978–2001. http://doi.org/10.1016/j.jss.2013.02.061
Bueno, P. M. S., Jino, M., & Wong, W. E. (2014). Diversity oriented test data generation using metaheuristic search techniques. Information Sciences, 259, 490–509. http://doi.org/10.1016/j.ins.2011.01.025
Cantu-paz, E. (1997). A Survey of Parallel Genetic Algorithms. Department of Computer Science and Illinois Genetic Algorithms Laboratory University of Illinois at Urbana-Champaign, 10. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.389
Cohen, M. B., Colbourn, C. J., & Ling, a. C. H. (2003). Augmenting simulated annealing to build interaction test suites. 14th International Symposium on Software Reliability Engineering, 2003. ISSRE 2003. http://doi.org/10.1109/ISSRE.2003.1251061
DÃaz, E., Tuya, J., & Blanco, R. (2003). Automated software testing using a metaheuristic technique based on tabu search. Automated Software Engineering, …. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1240327
Elaoud, S., Loukil, T., & Teghem, J. (2007). The Pareto fitness genetic algorithm: Test function study. European Journal of Operational Research, 177(3), 1703–1719. http://doi.org/10.1016/j.ejor.2005.10.018
Ferrer, J., Chicano, F., & Alba, E. (2012). Evolutionary algorithms for the multi-objective test data generation problem. Software: Practice and Experience, 42(11), 1331–1362. http://doi.org/10.1002/spe.1135
Ferrer, J., Kruse, P. M., Chicano, F., & Alba, E. (2015). Search based algorithms for test sequence generation in functional testing. Information and Software Technology, 58, 419–432. http://doi.org/10.1016/j.infsof.2014.07.014
Harman, M., & McMinn, P. (2010). A Theoretical and Empirical Study of Search Based Testing: Local, Global and Hybrid Search. IEEE Transactions on Software Engineering, 36(2), 226–247. http://doi.org/http://dx.doi.org/10.1109/TSE.2009.71
Hermadi, I., Lokan, C., & Sarker, R. (2014). Dynamic stopping criteria for search-based test data generation for path testing. Information and Software Technology, 56(4), 395–407. http://doi.org/10.1016/j.infsof.2014.01.001
Lakhotia, K., McMinn, P., & Harman, M. (2009). Automated test data generation for coverage: Haven’t we solved this problem yet? TAIC PART 2009 - Testing: Academic and Industrial Conference - Practice and Research Techniques, 95–104. http://doi.org/10.1109/TAICPART.2009.15
Mao, C. (2014). Generating Test Data for Software Structural Testing Based on Particle Swarm Optimization. Arabian Journal for Science and Engineering, 39, 4593–4607. http://doi.org/10.1007/s13369-014-1074-y
Mao, C., Xiao, L., Yu, X., & Chen, J. (2015). Adapting ant colony optimization to generate test data for software structural testing. Swarm and Evolutionary Computation, 20, 23–36. http://doi.org/10.1016/j.swevo.2014.10.003
McMinn, P. (2004). Search-based software test data generation: a survey. Software Testing, Verification and Reliability, 1–58. http://doi.org/10.1002/stvr.v14:2
McMinn, P. (2011). Search-Based Software Testing: Past, Present and Future. 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops. http://doi.org/10.1109/ICSTW.2011.100
McMinn, P., Harman, M., Lakhotia, K., Hassoun, Y., & Wegener, J. (2012). Input Domain Reduction through Irrelevant Variable Removal and Its Effect on Local, Global, and Hybrid Search-Based Structural Test Data Generation. IEEE Transactions on Software Engineering, 38(2), 453–477. http://doi.org/10.1109/TSE.2011.18
Miller, J., Reformat, M., & Zhang, H. (2006). Automatic test data generation using genetic algorithm and program dependence graphs. Information and Software Technology, 48, 586–605. http://doi.org/10.1016/j.infsof.2005.06.006
Pachauri, A., & Srivastava, G. (2013). Automated test data generation for branch testing using genetic algorithm: An improved approach using branch ordering, memory and elitism. Journal of Systems and Software, 86(5), 1191–1208. http://doi.org/10.1016/j.jss.2012.11.045
Patil, M., & Nikumbh, P. J. (2012). Pair-wise Testing Using Simulated Annealing. Procedia Technology, 4, 778–782. http://doi.org/10.1016/j.protcy.2012.05.127
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.
Ribeiro, J. C. B. (2008). Search-based test case generation for object-oriented java software using strongly-typed genetic programming. Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Computation - GECCO ’08, 1819. http://doi.org/10.1145/1388969.1388979
Srivastava, P. R., & Baby, K. (2010). Automated Software Testing Using Metahurestic Technique Based on an Ant Colony Optimization. 2010 International Symposium on Electronic System Design, 235–240. http://doi.org/10.1109/ISED.2010.52
Srivastava, P. R., & Kim, T. (2009). Application of Genetic Algorithm in Software Testing. Intenational Journal of Software Engineering and Its Applications, 3(4), 87–96. Retrieved from http://www.sersc.org/journals/IJSEIA/vol3_no4_2009/6.pdf
Vos, T. E. J., Lindlar, F. F., Wilmes, B., Windisch, A., Baars, A. I., Kruse, P. M., … Wegener, J. (2013). Evolutionary functional black-box testing in an industrial setting. Software Quality Journal, 21, 259–288. http://doi.org/10.1007/s11219-012-9174-y
Yao, X., & Gong, D. (2014). Genetic Algorithm-Based Test Data Generation for Multiple Paths via Individual Sharing. Computational Intelligence and Neuroscience, 2014, 1–12. http://doi.org/10.1155/2014/591294
Journal of Software Engineering(JSE, ISSN 2356-3974) Copyright © 2020IlmuKomputer.Com. All rights reserved. |